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Abstract: Avermectin Bl-3,4-oxide (2,, has been synthesized from avermectin 61 (1). While epoxide 2. is comparable to 
avermectin B 1 in b&activity, opening of the epoxide leads fo derivatives which are substantially less bioactive. 

The avermectins are a family of naturally occurring macrocyclic lactones with important anthelmintic and pesticidal 

activity.1 The major product isolated from the fermentation of S. Avermiliti~ is avermectin Bt (1). The 22,23-dihydro 

derfvative of L known as ivermectin, is widely used as an anthelmintic agent in human and animal health. The synthesis2 

of avermectin Bt-8,9-oxide,2,3 an analog with bioactivity3c comparable to that of 1 but with improved photostability3d 

(important for potential agricultural use as a pesticide), has recently been reported. The excellent bioactivity of the 6,9- 

oxide prompted us to examine the synthesis and reactions of other avermectin epoxides. We have recently completed 

and report herein the synthesis of avermectin Bl-3,4-oxide (2) and analogs derived from it. We also report herein some 

interesting observations regarding bioactivity of these avermectin derivatives. 

2 

We began by blocking the free 7-OH of 1 as the TMS ether so that it would be unable to direct epoxidation to the 8,9- 

double bond. Thus, treatment of 1. with a large excess of BSTFA4a (15 eq BSTFA, DMF, 250C. overnight) afforded 

4”,5,7-ttis-O-trimethylsilyl-avermectin Bt Brief (10 minutes at 250C) treatment of this per-silylated material with p- 

toluenesutfonic acid (0.25 eq) in 9:l THF:H20 (to cleave the secondary TMS ethers) cleanly afforded the desired 7-O- 

TMS-avermectin Bl @) (97% yield from 1).5a When3 was subjected to the vanadium catalyzed epoxidation procedure6 

(benzene, 3 eq TBHP added in portions, 0.25 eq VO(acac)p, 7OoC, 6 hours) previously used to prepare the 8,9-oxide2 

the expected 3,4-oxide 4 was obtained in moderate yield (ca. 48% based on unrecovered starting material; attempts to 

force the reaction to completion led to substantial reduction in yiekf).5a Since the epoxidation was presumably directed 

by the 5-OH group the stereochemistry of the epoxide was assigned as beta. Additional evidence for this assignment was 

later provided by NMR analysis of a derivative (tide i&a). Removal of the TMS group with HFlpyridineITHF (25oC, 

overnight) then afforded the desired avermectin Bl-J&oxide (2) in 77-84% yiekf.5a.b 

We briefly explored the reactivity of 2 towards various nucleophiles. We found that the epoxide reacted readily with 

thiophenol(3-4 eq) and triethylamine (3 eq) in methanol (55oC, 23 hours, 62-71%) to afford the expected epoxide opened 

derivative g.5a.c NMR analysis of p provided additional support for the assignment of the epoxide stereochemistry of 2 as 

beta. In the 400 MHz NMR of 3 the coupling constant J2,3 is about 4 Hz. This is consistent with partial structures A and 

B, which represent the chair and boat forms of the product derived from a 3,4-@)-oxide. On the other hand, the product 
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derived from opening a 3.4-(a)-oxide, represented by partial structures G and Q, would be expected to have a J2,3 of 

about 9 Hz.7 Thus the NMR data of p and the mechanism of the directed epoxidation used to prepare 2 are both 

consistent with the beta 3.4-epoxide stereochemistry. 
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In an attempt to open the epoxide with a nitrogen nucleophile 2 was treated with 4methoxyphenethylamine (4-MPA, 5 

eq.) in methanol (55oC, 41 hours). Two products were obtained, however neither was the result of epoxide opening by 

the atine. The major product resulted from base catalyzed beta-elhnination of the epoxide oxygen to form the delta-2,3 

analog -&5a,e The minor product resulted from base catalyzed trans-estedficatbn of I with methanol to form the 

corresponding methyl ester @,d When DBU4b was substftuted for 4-MPA the major product was 5 (44%) with 1 

isolated as the minor product (15%). 

We found that opening of the epoxide had an interesting effect on the biological activity of the resulting derivatives (see 

Table I). The activity of the 3,4-oxide Q) against two-spotted spider mites8 and brine shrimp larvae9 is comparable to the 

activity of avermectfn Bf (1). However, derivatives in which the epoxlde has been opened &-a are substantially less 

active. It is not clear whether this substantial loss of activity is due to a change in the conformation of the molecule or to 

the presence of additional substituents at C-3 and C-4. It is interesting to note, however, that analogs with a 7-OTMS 

group Q and 3 are also substantially less active than 1 and 2. Further work on derivatization of the avermectfns is in 

progress and will be reported in future publications. 

TABLE I 

T. UrficaQa A. Safin$ 

lz&bxm IQ oo(wW 
I 0.04 308e 

2 0.03 430 

s >>0.25c s555oof 

4 >>0.25c >555OOf 

P >o.%d 2555oof 

a >>1.2!V >555OOf 

Z 1.25 >555OOf 

(a) Two spotted spider mite (T. u&&e) data obtained as described in reference 8a; (b) 
Brine shrimp (A. salina) data obtained as described In reference 9, average of 2 assays 
unless otherwise noted; (c) Highest level tested, ~20% activity; (d) Hthest level tested, 
~50% activity: (e) average of 103 assays: (1) Highest level tested, cl 00% activity. 
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OH), 3.92 (lH, br s, H13), 3.82 (lH, d, J = 4 Hz, Hg), 3.48 (3H, s, CCH3), 3.43 (3H, s, OCH3), 3.37 (lH, d, J = 4 Hz, Hp), 
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